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Abstract—A non-linear shear-deformation theory is developed for the axisymmetric deformations
of a shallow spherical cap comprising laminated cylindrically-orthotropic layers. Governing equa-
tions are expressed in terms of the transverse displacement, stress function and rotation. A Fourier-
Bessel series solution is formulated for the post-buckling behaviour of symmetrically-laminated
spherical thick caps with four types of edge conditions. Numerical results on the buckling and post-
buckling behaviour of spherical caps under uniformly-distributed loads are presented for various
boundary conditions. cap rises. base radius-to-thickness ratios, numbers of layers and material
properties. The present results are compared with available data.

INTRODUCTION

The geometrically-non-linear behaviour of laminated composite structural members has
received considerable attention in recent years. A number of rescarchers have studied the
elastic behaviour of composite structures and have mainly focused on thin plates. A review
of the literature on the geometric non-lincar behaviour of composite plates may be found
in references contributed by Chia (1980, 1988b) or elsewhere. Non-lincar vibrations and
post-buckling of laminated circular cylindrical shells were reported by Khot (1970a,b),
Sheinman ef «f. (1983) and Iu and Chia (1988a,b) using various analytical mcthods.
The non-lincar axisymmetric response of orthotropic shallow spherical shells has been
investigated in some detail. Using the Rayleigh—Ritz method, Varadan and Pandalai (1978)
considered static buckling of orthotropic spherical caps based on a two-mode shape approxi-
mation. Alwar and Reddy (1979) and Dumir er al. (1984a) analyzed the static and dynamic
buckling behavior of orthotropic shallow spherical caps with a circular hole using a Cheby-
shev series. Based on the collocation method, Dumir er al. (1984b) examined the static and
dynamic buckling of orthotropic shallow spherical caps with an elastically-restrained edge.
Utilizing a single-mode approximation, Dumir (1985) studied the non-linear axisymmetric
response of orthotropic thin spherical caps on elastic foundations. Nath and Jain (1985a,b,
1986) employed a Chebyshev series to study the non-linear behaviour of orthotropic
spherical caps, under conditions such as: the transient response, the influence of foundation
mass on the non-linear damped response, static and dynamic response and the effect of an
elastic foundation on the non-lincar transient response. The non-linear static and dynamic
responses of truncated conical and shallow spherical orthotropic shells were reported by
Dumir (1986) making use of the Galerkin method. Recently, the non-linear vibrations
and post-buckling of symmetrically-laminated shallow spherical shells with rectangular
planform were discussed by Chia (1987, 1988a) utilizing a generalized double-Fourier series.
All these analyses mentioned above, however, are confined to thin shells, and the effects of
transverse shear deformation are neglected. In addition, a geometrically-non-linear analysis
of laminated shallowsphericals caps by analytical methods cannot be found in the literature.

Several high-order theories of shells that take the effect of transverse shear deformation
into account should be mentioned. Hildebrand ef al. (1949) made a survey of various systems
of equations for thinisotropic elastic shells and proposed a new system for orthotropic shells.
On the basis of the work of Mindlin (1951) on the theory of isotropic plates, Herrmann
and Mirsky (1956) derived a system of equations for isotropic circular cytindrical shells.
Using Mindlin’s theory and Love's approximation, Dong and Tso (1972) developed the
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first shear-deformation theory for laminated orthotropic shells. Other contributions in this
area were made by Whitney and Sun ( |974\) developing a linear refined theory for anisotropic
shells, by Reddy and Liu (1985) formulating a linear higher-order shear deformation theory
for laminated elastic shells, and by Stein (1986) proposing a non-linear shear-deformation
theory for transverse isotropic shells.

In this paper. a non-linear shear-deformation theory is developed for axisymmetric
deformation of laminated cross-ply shallow spherical caps. The buckling and post-buckling
behaviour of symmetrically-laminated caps is studied. Governing equations are expressed
in terms of a stress function, the rotation of a normal to the middle surface and the
transverse displacement. These three dependent variables are expanded into Fourier-Bessel
series. and governing equations are reduced to a set of algebraic equations by making use
of the Galerkin method. Four types of edge conditions are considered. The results obtained
for the buckling and post-buckling behaviour of symmetrically-laminated cross-ply spheri-
cal caps under a uniformly-distributed load are presented for various cap parameters and
four types of boundary conditions.

BASIC EQUATIONS

Consider a shallow spherical cap (Fig. ). The elevation of the middle surface of the
cap above the base plane, /, is approximated by the paraboloid :

[ = H[l—(r/a)’] (nH

where A is the initial risc of the spherical cap and « is the base radius. The radius of
curvature of the undeformed cap is

R = a*(2H).

—
to
~

The cap, under the action of transverse forces of intensity ¢(r), is assumed to consist of
an arbitrary number of perfectly-bonded. cylindrically-orthotropic layers. Each layer has
arbitrary thickness and elastic propertics, and the axes of orthotropy of cach layer coincide
with the polar coordinates of the cap base plane. Within the framework of the shallow-
shell theory (H/a < 0.25), the tangential forces and displacements can be taken to be their
projections on the base plane of the shell, as proposed by Reissner (1946). With the
transverse shear effect being taken into consideration, the radial displacement, u,, at a
distance z from the middle surface is assumed to vary linearly across the thickness of the
cap and the transverse displacement is to remain constant. In the case of axisymmetric
deformation of the shallow spherical cap, the displacement field may be written in the form
(Iu and Chia, 1988b)

w,(r,z) = u(ry+zy(r)
wuy(r,z) =0
w(r,z) = w(r) (3)

in which u,. u, and w are the displacements in the r, ¢ and = directions, respectively | u is
the value of «, at the middle surface and y is the rotation of a normal to the middle surface.

Fig. I. Geometry and coordinate system of shallow spherical cap.
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Neglecting the products of inplane-displacement derivatives, the classical non-linear
strain-displacement relations become :

g, =e24:K,, & =E)+IKy
& = '1/+W.l~ &y: =&y =& = 0 (4)

where a comma denotes differentiation with respect to the corresponding coordinate and
where

& =u,—w/R+wi/2
&) = u/r—w/R

K=V, Ky=yJr )

The stress—strain relations for the kth layer are

(k) k) k)
G, ( _ ST Si2))e o™ = GWg (6)
ol S SHle) 7 w
(k)

where ¢, a8 and ¢!’ are the KirchhofT stress components and S{’ and G’ are the elastic
in-plane and shear stiffness of the kth layer.

The stress and moment resultants are defined to be the same as in the classical shell
theory. In view of (4) and (6), membrane stress and moment stress resultants are

[Nl} _ [[Al [Bl] {[1}
{[M] RGN 0
=} o= {ig} - o w- {2

AII AIZ] [Bll BIZ} [Dll vDIZ]
Al = , Bl = , [D]= . 8
B i SRR P R P ©
In these matrices, the elements A4,; and 8,; and D;; are given by
hf2

(A‘,,B.,.D.,>=f S, z,2d: (hj=1,2). )

~h/2

The transverse shear strain in (4) represents the average shear strain across the thickness
of the cap. As can be derived from the second of (6), the transverse shear stress is a step
distribution across the cap thickness and does not vanish on the bounding surface of the
cap. To eliminate this discrepancy a parabolic shear stress distribution across the cap
thickness is assumed in the form as in the work by Fu and Chia (1989a,b) :

30, ¥
1= () ] (ot
and the transverse shear-stress resultant, Q,, may be written as

1 The displacement field assumed by Soldatos (1987) also yields a parabolic shear-stress distribution across
the thickness of a laminate.
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Q. =G%.=G"y+w,) (1)

in which G* is the shear rigidity. The complementary energy due to o,. given by expression
(10} is

1 h 2
v=a] e arne:

—h2
907 & 1 8 . 16 .
= 8h- EZI a—‘.]:hk'”hkua“ W(":*h;}w”’ S—hj(hé—hf-|)] (2

where N is the number of layers. On the other hand, the complementary energy from
expression (11) is

V= 10}/G*. (13
Equating the shear complementary energies and hence coeffictents of like terms yields

an’
G* = e : . o e e e (14)

Y 90 —h ) =B(hE =k DGR+ 16(hE —h] )/ (ShY]/G®

k=1

Equation {(7) gives the stress and moment resultants tn terms of mid-surface strains
and deformed cap curvatures. A partial inversion of this equation leads to

(="] (A1 [B8*])IV]
= " (13)
[M] —[B8*}) [D*]] K]
where the superscript T represents the matrix transpose and where

[A*]=[d4] . [B*]= —[4]"'[B). [D*]=[D]~[B](4]) '[B]. (16)

The equilibrium of in-plane stress and moment resultants and that of transverse forces
require, in the absence of body forces,

(rN), =Ny =0
rN(riR+w,)+rQ, +J rgdr=20
0
(rM), —My—rQ, =0 (n

in which ¢ is the intensity of a distributed normal load.
By convection, a stress function, F, is introduced as

N, =Fjr, Ny=F,. (18)

This function satisfies the first of (17) exactly. Using (11) and (15), the last two of (!7)
and the compatibility condition. the resulting equations may be written in the following
dimensionless form:

"“i-xguﬂi,m"';w(gn + 8B, — E-‘:)F,y+}~:§sz T/P+D‘z|('f;4»+ﬂ'/;,-p)
o

—15_;01;/p+2).?).;p1-‘+}.|F"W‘,+).fi§J pQdp =0
0
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T.[—i\BupE,, —i(B.+ B — B)E, +4,B,,Flp+ D, (1, + 0¥ ,,)
~D22¥lp] - 4iGp(W+W,) = 0
A (pF,,+F,) -4, |F/P+521P&.gp/;~| +(B., +§:;—B“)J,p/}.|
— B 12U /(hip) +202p W, + W3[(24) = 0. (19)

In the above equations, T, is a tracing constant, which represents the influence of transverse
shear when T, =1; when T, = 0, this effect is neglected. Also in these equations, the
dimensionless parameters are defined as:
p=ria. W=wh, =(ahy, F=F/(Eh)
A=alh, iy=Hla, Q=qa*/(Eh*H?)
A, =ASEh. B;=BYh D;=DY(ER) (i j=12)

G = G*/(E,h). (20)
Including the transverse shear deformation, the resulting eqns (19) constitute a system of
equations governing the axisymmetric finite deformation of an unsymmetrically-laminated
spherical cap comprising cylindrically-orthotropic layers.

In what follows, the present study is restricted to a cross-ply spherical cap laminated
symmetrically with respect to the middle surface, for which

BY=0, DY=0D, (ij=12). (2h

The resulting eqns (19) thus are simplified to

- - - [
Db +py,,)—Dulp+24id,pF+ A FW , + 1313 J pQdp=0
[i]

T\ W, +p,,) = Daalllpl = 4iCph + W,) = 0
To formulate a solution to the present problem, two finite conditions at the apex should
be imposed to ensure that stress couples and membrane stress resultants do not increase
indefinitely at the apex:

¥=0 and N,(=Fjp) isfiniteatp =0. (23)

Four types of boundary conditions at the edge are also considered and expressed in
dimensionless form:

(i) For a clamped immovable edge (Cl):
W=0, =0, U=A,:F+A0pF, =0 at p=1. (24)
(ii) For a clamped movable edge (CM):
W=0, =0, N,=0 at p=1. 25)
(iii) For a simply-supported movable edge (SM):

W=0, M,=D,y,+D,jlp=0, N,=0 at p=1. (26)
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(iv) For a simply-supported immovable edge (SI):
W=0 M,=0. U=0 at p=| 27
where

M,=Ma (ER'). N, =Na(EHR), Us=uh (28)

The system of (22) is to be solved in conjunction with finite conditions (23) and boundary
conditions (24)-(27). respectively.

METHOD OF SOLUTION

A soltition to the system of (22} is formulated by expansion of dependent variables
W, ¢ and Finto Fourier-Bessel series :

W=Y W,X.p)
o= 1
b=3 R.Y.(p)
me= |
F=Y S7Z(. 29

r=1

In these expressions, W, R, and S, arc constant cocflicients to be determined later and
functions X,,, ¥, and Z, are given by:

1‘/m ([)) = ‘It)(amp) - Ii)(am[))-lo(am)/[()(am)
Yo (0) = J,(@np) + 1(0np) o (%) To(2,)
Z,(p) = pJo(B.p) (30)

where Jy, J,, , and /, are Bessel functions and modified Bessel functions of the first kind
of order zero and order one. The condition W = 0 at the edge and the finite conditions at
the apex are automatically satisficd by the assumed solution (29). The constants «,, and f,
are determined by substituting the expressions for  and £ into the last two in each set of
boundary conditions (24)-(27). The values of these constants are presented in Table 1,
with elastic constants typical of gluss-epoxy, boron-epoxy and graphite-epoxy composite

Table 1. Values of 2, and f} in eqns (30)

Boundary
condition Material ¥ k=1 k=2 k=3
Clamped 3.1962206 6.3064370 9.4394991
SO { 2.2488001 5.4604944  8.6167405
2 Simply GL 3 22731447 5.4687601 8.6217531
supported BO 3 22045701 54462973 8.6082163
GR 3 21652488 5.4345622  8.6012501
1SO ! 1.0292778 3.9877522 7.1024909
GL 3 10872543 4,0084519 7.1143470
B, Immovable BO 3 1.2136517  4.0600777  7.1443501
GR 3 12376280 4.0709737  7.1507681

Movable 24048256 5.5200781 8.6537279
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Table 2. Numerical values of elastic constants

Material E,E, G, E vy,
Glass—epoxy (GL) 3 0.5 0.25
Boron-epoxy (BO) 10 0.333 0.22
Graphite-epoxy (GR) 16 0.22 0.30
Isotropic (ISO) 1 0.385 0.30

materials. These elastic constants are given in Table 2, where E, and E; are the principal
moduli of elasticity of an orthotropic material, G,. is the shear modulus, and vy, is the
Poisson ratio.

Substituting series (29) into (22). multiplying the first of (22) by X, (p), the second by
Y,(p) and the third by Z (p). and then integrating with respect to p from 0 to 1, we obtain
the following three sets of algebraic equations for W,,, R, and §,:

ﬂ’;: Wer+d;an+a’JnSr +aan = 0
a5, R, +de, W, =0
CI";_‘S,‘F({;,W,"‘FU’;:WMW[;:O (31)

in which @ is the load parameter for ¢ (being a uniform external normal pressure), and the
as are constants presented in the Appendix. For simplification in calculation, coefficients
R,, and S, can be expressed in terms of W, from the last two of (31):

Rm = - [U’;‘I - laf,‘, Wk
Sr = - [a':l.t] ) 'a/!((x le - [a':l.'} - Ia,‘;'rk Wm Wk- (32)

Substituting (32) into the first of (31), the resulting equation for W, is
’l"nWm+b'gtl: mek +h’;.:lwmwku/j+a4nQ =0 (33)

where the bs are constants also given in the Appendix. This system of simultaneous non-
lincur algebraic equations for the Fourier-Bessel coefficients W,, can be handled sys-
tematically by a computer for an arbitrary number of terms in these truncated series (29).

NUMERICAL RESULTS AND DISCUSSIONS

Computations were performed for a symmetrically-laminated cross-ply spherical thick
cap which consists of an odd number of cylindrically-orthotropic layers, all of the same
thickness and material properties. Elastic constants used in calculation are presented in
Table 2 for glass-epoxy (GL), boron-cpoxy (BO) and graphite-epoxy (GR) composite
materials and for an isotropic material. Uniformly-distributed static loading normal to the
undeformed middle surface is assumed. In calculation, only the first three terms in each
truncated series for W,  and Fin (29) are taken into account because numerical results
have demonstrated that the influence of the other terms is negligibly small. The results are
presented in graphs and tables for the dimensionless load, Q, and maximum deflection,
Wmsx/ft. In addition the average dimensionless deflection, W is introduced in order to
compare with the previous results obtained by Dumir er af (1984b) :

i
W=2 j oW dp. (34)
0

The numerical procedure is briefly described for solving the set of non-linear algebraic
eqns (33) for Q and W, in the truncated series (29) by the Newton-Raphson method. The
number of non-linear algebraic equations is equal to the number of unknowns for any
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Table 3. Comparison of values of (4 ui,, and @,

Varadan and Pandala

Present (7, = 0) (1978)
Vi = 13 (H 21 Q‘,r (H d)oy Q;r
EyE =1(CDh 0.08305 3.1802 0.08248 32182
EJE =4(Ch 0.09720 47172 0.10010 48170

truncated series. By prescribing one of the unknowns ', or Q. the resulting non-linear
algebraic equations can be readily solved provided that a good initial guess be made for
the other unknown. In general. the prescribed value is one of H/, while the initial guess is the
previous solution. The difference between the prescribed unknown and the corresponding
unknown in the previous solution should be made small to ensure rapid convergence. The
maximum number of iterations required for convergence ts 10. Once a solution for the
Fourter—Bessel coefficents W, and load @ is obtained, the maximum deflection wy,,, at the
pole can easily be determined.

In this study the least value of the gcometric parameter, H/a. denoted by (H/a),,, for
which buckling occurs is obtained by use of the foregoing procedure. The value of the ratio
Hja for which buckling does not occur is increased by a small increment and (33) is
solved. The process is repeated until buckling just occurs and vice versa until buckling just
disappears. The values of (H/a), and the associated buckling loads for isotropic and
orthotropic immovable clamped spherical caps are presented in Table 3 for comparison
with those given by Varadan and Pandalai (1978}, The maximum diflerence between two
sets of values is less than 3%.

As a partial cheek on the accuracy of the present solution, the load -deflection curves
of isotropic and orthotropic thin spherical caps with simply-supported immovable and
movable edges (SI and SM) for various values of the modulus ratio are compared in Fig.
2 with those obtained by Dumir (1985) using the orthogonal point collocation method. A
good agreement is obscrved between the two sets of curves. In Fig. 3, the present results
for the post-buckling behaviour of clamped immovable orthotropic spherical caps with
different cap rises agree closely with those given by Dumir ef af. (1984b). A comparison of
buckling loads is shown in Fig. 4 for isotropic spherical caps with immovable clamped and
simply-supported edges. Present results obtained by neglecting the transverse shear are
represented by solid curves (7, = 0) and those taking this effect into account by dotted
curves (T, = 1). The present results obtained by neglecting the transverse shear effect are
in good agreement with those given by Varadan and Pandalai (1978) for a clamped edge
and by Dumir er al. (1984) for a simply-supported edge. The effects of material properties
on the values of (H/a)., and Q. shown in Fig. 5 are presented in Table 4. The value of

70

60l ———— PRESENT Eg/Er =3

—— e = OUMIR (1985)

50

40

30

20

¥max /N

Fig. 2. Comparison of load -deflection response for simply-supported isotropic and orthotropic
spherical caps (vo, = 0.3, wh = 50, H a = 0.02).
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2 g\~ e - ’
! PRESENT o.16
—-— DUMIR ET AL (1984b)
I I !
] 0.5 1.0 15 20
w

Fig. 3. Comparison of buckling and post-buckling behaviour for clamped immovable (CI) ortho-
tropic spherical cap with different cap rises (E,/E, = 3, v,, = 0.3, a/h = 50).

s
3
o .
3
QC'
2.
Cl+ vg, =173
S+ %G, ¢ 03
'r A VARADAN (1978)
e DUMIR ETAL (1984
) ) ! 1

0 0.03 0.0 Q.15 0.20 Qz2s

H/a
Fig. 4. Comparison of buckling loads for clamped immovable (CI) and simply-supported immovable
(81) isotropic spherical cap for a/h = 20.

| l 1 |

Q.13 0.20 0238

H/a

Fig. 5. Effect of material propertics on buckling loads of simply-supported immovable three-layer
spherical cap for a/h = 5.

0.03 0.10

1179

(H/a),, is roughly 0.05 for a simply-supported immovable three-layer cross-ply spherical
cap with g/h = 15. By inspecting these curves, it may be noted that the buckling load Q..
initially decreases and then increases with an increase in the ratio H/a. Figure S also indicates
that for a symmetrically-laminated cross-ply spherical cap, the buckling load Q,, increases
with an increasing modulus ratio, but the critical value (H/a). decreases as the ratio
increases.
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Table 3. Values of (A a), and @, shown in Fig. 5

T, =0 T =1
Material (H Cl).;, Q\, (H"”cr ch
GL 0.05414 3.963s 0.05393 39478
BO 0.05246 9.1398 0.05168 9.0142
GR 0.05197 13.6390 0.05037 132362

Figure 6 shows the post-buckling response of a clamped cross-ply spherical cap for
various values of Hia. It can be seen from these response curves that, except for when
H'a = 0.1, all caps undergo snap-through buckling and have a reduction in load after
buckling. The buckling load increases as the ratio A a increases. The maximum detlection
of a clamped immovable cross-ply cap is plotted in Fig. 7 against the transverse load for
different materials. With the transverse shear effect neglected. the snap-through buckling
of all caps of different materials occurs at approximately the maximum deflection equal to
the cap thickness.

The response curves for simply-supported movable three-layer cross-ply caps are shown
in Fig. 8 for different ratios of the basc radius-to-thickness. It is found that the buckling
load increases with this ratio. In Fig. 9 the effect of the number of layers N on the buckling
load is tllustrated for clamped movable cross-ply caps. These curves indicate that the
buckling load increases as the number of laycers increases. For the value N < 5 the influence
of the number of layers on the buckling load is much pronounced. The buckling load
increases by 60% when  is changed from & = 1 (orthotropiccap) to N = 15, This increase

4
20— /
Ts =0 Y,
_..—_TS . { /
LY - 7 MH/a =000
——"’//
@ — H/a = 0I5
10— ~ ~
/ \\\ S e v e et
L H/a » 0.20
i ]
0 | 2 3
Wmax /h

Fig. 6. Effect of cap height on post-buckling response of clamped immovable five-layer boron
epoxy spherical cap tor a o = 15,

20 - Ts =0
———Tg =1
15— o~ GR
1/ ~
/ ~ 7]
Q f — e A
0t 5 "\_‘.s-‘ -
/ 8O T
3 = = 4.—:::{’4
GL
| |
¢} | 2 3
Wmax /D

Fig. 7. Effcct of material propertics on post-buckling response of clamped immovable five-layer
spherical cap for a/h = 10 and Hja = 0.2
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Tg =0
————Tg v 1
a/h=50

a/h=10

Q i 2 3
Weagx 7 h

Fig. 8. Effect of base radius-to-thickness ratio on post-buckling response of simply-supported
movable three-layer graphite-epoxy spherical cap for H/a = 0.2.

[¢] i 2 3
wmaox /h

Fig. 9. Effect of number of layers on post-buckling response of clamped movable boron-epoxy
sphericul cap (a/h = 50, Hja = 0.06 and T, = 0).

is considerably significant for the load-carrying capacity. The load-deflection curves shown
in Fig. 10 depict the effect of edge conditions on the buckling load of a five-layer cap. It is
observed that the effect of in-plane edge conditions is much noticeable. For the clamped
cap the buckling load is 80% greater with an immovable edge than with a movable edge;
for a simply-supported cap, it is 240% greater. The buckling loads of clamped and simply-
supported caps are nearly the same for edges immovable in the meridian direction, but are
different by 90% for movable edges.

o |

wmax 7h

Fig. 10. Effect of edge condition on the post-buckling response of five-layer graphite-epoxy spherical
cap fora/h = 15 and H/a = 0.2.
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In this analysis, the effect of transverse shear on the buckling and post-buckling
behaviour of laminated spherical caps is also studied in some detail. In Figs 4-8 and 10 all
dotted curves take into account this effect, for comparison with solid curves neglecting this
effect. These results indicate that the effect of transverse shear does not alter the behaviour
of the elastic response, but in all cases generally results in a reduction in the buckling load
and post-buckling load-carrying capacity. This reduction is more pronounced for high-
modulus composite materials as shown in Figs 5 and 7. For clamped immovable five-layer
caps comprised of glass—epoxy, boron—epoxy and graphite-epoxy materials. the effect of
transverse shear reduces the buckling load by 4%. 11% and 18%, respectively. as depicted
in Fig. 7. The reduction in the post-buckling load caused by the effect is 35% at w,, /A= 1.2
in the case of the graphite—epoxy material. As shown in Fig. 8. the transverse shear
deformation exhibits a strong influence on the buckling and post-buckling behaviour for
moderately-thick laminated spherical caps and the buckling load is reduced by 10.3% for
alh = 10. It is noticed that a large reduction in buckling and post-buckling loads shown in
Fig. 7 is partially due to the small ratio of the base radius-to-thickness, i.e. a/h = 10. The
reduction, however, is not significant for large values of this ratio such as a/h = 50, as
shown in Fig. 8. The effect of the transverse shear on buckling load and post-buckling
response of a five-layer graphite—epoxy spherical cap is illustrated in Fig. 10 for four types
of boundary conditions. The reduction in the post-buckling load caused by this effect is
much more significant for a clamped immovable cap than for clamped and simply-supported
movable caps. In the case of a simply-supported movable cap, the transverse shear effect
slightly increases the post-buckling load rather than decreases it.

CONCLUSION

Governing equations including the transverse shear deformation are derived for the
axisymmetric finite deformation of a spherical cap comprising laminated cylindrically-
orthotropic layers. A solution is formulated for the buckling and post-buckling of a sym-
metrically-laminated cross-ply spherical cap under uniform normal pressure tor four types
of edge conditions. In special cases, present results are in good agreement with those
suggested by other studics. Numcrical results are presented graphically for various values
of cap rise, base radius-to-thickness ratio, number of layers and material properties and for
different boundary conditions. Based on this study some concluding remarks may be drawn.

The buckling load of a laminated spherical cap increases with the increase in the
modulus ratio, the base radius-to-thickness ratio and the number of layers, but decreases
with the increase in the ratio of the cap rise to base radius. Once the least value of this ratio
H/a occurs, the buckling load initially decreases and then increases with an increase in the
ratio. For the four types of edge conditions considered, the effect of in-plane conditions on
the buckling load is much noticeable, especially for the simply-supported edge. The load-
carrying capacity in the post-buckling range increases with the increase in the number of
layers and in the modulus ratio of a composite material.

The transverse shear effect is significant especially for a moderately-thick and laminated
spherical cap and generally reduces the buckling and post-buckling loads. The effect,
however, does not change the general behaviour of the cap response in all cases. The effect
of transverse shear on the buckling is pronounced for caps of high-modulus materials and
caps with low base radius-to-thickness ratios. For a moderately-thick spherical laminate
the effect on post-buckling behaviour is considerably remarkable. This effect on the load-
carrying capacity is greater for caps with a clamped edge than for that with simply-supported
edge.
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APPENDIX
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in which primes denote differentiation with respect to the corresponding coordinate.



